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ABSTRACT 

Models of a small-scale water rocket are developed as an 
example of open system modeling by both the bond graph 
approach and a more classical method. One goal of the 
development is to determine the benefits of the bond graph 
approach into affording insight into the system dynamics. 
Both modeling approaches yield equivalent differential 
equations as they should, while the bond graph approach 
yields significantly more insight into the system dynamics. If a 
modeling goal is to simply find the system equations and 
predict behavior, the classical approach may be more 
expeditious. If insight and ease of model modification are 
desired, the bond graph technique is probably the better 
choice. But then you have to learn it! 

NOMENCLATURE 
A(x) cross-sectional area of differential mass 
AL cross-sectional area at internal air-water interface 
A0 cross-sectional area at nozzle 
cd drag coefficient 
dm differential mass of fluid element 
Fd drag force 
g gravitational acceleration 
-in subscript denoting “initial” 
I hydraulic inertia 
L height of fluid column in rocket  
mr rocket mass 
mt total mass 
p linear momentum 
Pa pressure of air in rocket 
Patm  atmospheric pressure 
Πe power flow to environment 
Q fluid volumetric flowrate 
Tp kinetic energy 
Tf kinetic co-energy 
v rocket velocity, positive up 
V volume of water in rocket 
Va volume of air in rocket 

ςq potential energy 
x height of differential mass from fluid exit plane 
Γ  pressure momentum 
ρ fluid density 

 
INTRODUCTION 

It is sometimes said that the “best” engineering model is 
the simplest model that answers the questions at hand. This 
philosophy is true if you know the questions before you build 
the model and, most of the time, you probably do. What about 
situations where you don’t know all the questions to ask? 
What if you need more insight into a situation before you can 
pose better and more specific questions? This is where you 
need a model that gives a sufficient amount of insight into the 
physical situation. In the realm of engineering systems, this 
means insight into the relationships of the important variables: 
power, energy, momentum, motion, etc., insight into not just 
how individual variables behave, but into the interactions and 
relationships among key variables. 

A hypothesis of this paper is that bond graphs afford a 
dynamic system designer or analyst an excellent tool for 
understanding the dynamics of open systems, systems that 
exchange mass and energy convectively with the 
environment. The understanding afforded is perhaps better 
(or more easily attained) than that possible by classical 
modeling methods or by using “off-the-shelf” modeling 
software. This is not to knock these other approaches. They 
are often powerful and can answer a majority of the 
engineering questions posed in straightforward ways.   

To this end, a dynamic model of a water rocket is 
presented as an example of an interesting open system using 
Lagrangian bond graphs.  The initial question is: “How does 
one maximize the vertical flight of the rocket?” The Lagrangian 
approach forces one to examine energy and momentum 
behavior in detail and perhaps find relationships that would 
otherwise remain hidden. As the model is constructed, insight 
is revealed. In comparison, a rocket model is also developed 
classically and the approaches are compared, both in the 



 

  

model construction, and in the resulting mathematical 
relationships. 

The methods to construct the open system, bond graph 
models are extended from the work of Redfield [1] and 
Karnopp [2]. This method compares in many ways with 
Beaman and Breedveld [3] but with perhaps a more 
energetically structured approach, and more emphasis on the 
physical interpretation of the bond graph configuration. 
Earlier work with bond graphs and open fluid systems is in 
Karnopp [4] where momentum principles develop equally valid 
bond graphs. More general work on Lagrangian mechanics 
and multibond graphs, of which the formulation of the current 
work is a subset, is in Breedveld and Hogan [5]. 

The following sections, after the nomenclature, deal with 
the Lagrangian bond graph development, the classical 
equation development, and then a comparison of the 
approaches and the information afforded. Simulation results 
from the model are shown at the end to give a flavor of the 
dynamics and the issues involved. Benefits of either approach 
all also sprinkled into the development where appropriate. The 
paper ends with some conclusions. 

 
LAGRANGIAN BOND GRAPH DEVELOPMENT 
 A dynamic model of a water rocket is presented by first 
using Lagrangian bond graphs (Redfield [1]).  Detail is 
presented here to fully describe the Lagrangian bond graph 
approach in the context of the rocket application.  
 Figure 1 is a schematic of the rocket in vertical 
orientation. 
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Figure 1 – Bottle rocket schematic 

 
Air is in the top volume (accumulator) at pressure Pa and fluid 
is in the bottom volume of height L. The cross sectional area 
of the fluid volume varies over L and x is the position of a 
differential slice of fluid measured from the exit. The fluid of 
density ρ is assumed incompressible and its volumetric flow 
rate is Q, positive exiting the rocket.  The rocket has a mass mr, 
and a velocity v, positive upward. 

 Accounting for system kinetic and potential energy, 
adding the effects of convected kinetic energy, and then 
considering the energetic influence of the environment leads 
to a development of the bond graph model. 
 
Accounting Kinetic Energy 
 We begin by modeling the kinetic energy of the system, 
Tp(v,Q,V)1, working with the two flow variables v and Q and 
the displacement variable of fluid volume, V. We formulate the 
kinetic energy in terms of the kinetic co-energy, Tf(v,Q,V)2, 
since it is much easier to describe due to volumetric flowrate 
being constant across the fluid volume. Note that QV −=&  in 

our application. Applying the chain rule for the time derivative 
of the co-energy gives 
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By definition, p and Γ are momentum and pressure momentum 

respectively.  
V

T f

∂

∂
 is a generalized effort with units of 

pressure. Using the Legendre transformation for the sum of 
kinetic energy and co-energy (Karnopp et. al. [6]), 
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with equation 1 results in the time derivative of the system 
kinetic energy, 

pT& . 
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From equation 3 there are three power variable pairs that 
change kinetic energy and in a bond graph development there 
are three power ports that affect the kinetic energy of the 
system. This gives a bond graph fragment for kinetic energy 
storage as in Figure 2. 

 

                                                                 
1 Subscript p denotes true kinetic energy, a function of momentum 

(p). 
2 Subscript f denotes kinetic co-energy, a function of flow (f). 
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Figure 2 – Bond graph fragment representing rocket 

kinetic energy 
 

An IC-field represents the kinetic energy because the energy 
is a function of momentum and displacement variables. It has 
three power paths affecting it. The states of the field are the 
two momenta, p and Γ, and the fluid volume V.  
 In the case of the rocket, the kinetic co-energy of the 
system in vertical flight includes both the rocket and fluid 
inertias. 
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A(x) and dm are the area and mass of the differential slice of 
fluid in Figure 1. With dxxAdm )(ρ= , the co-energy 

becomes 
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Taking the partial derivatives with respect to the flows give 
the momenta from equation 1. 
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the hydraulic inertia term for variable area sections3. 
 The generalized effort of equation 1 comes from the 
volume dependency of the co-energy: 
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3 Note that for constant area cross section the hydraulic inertia 

becomes ρL/A. 

 
The term in the parentheses is absolute water velocity at top 

of the water volume so 
V

T f

∂

∂
 is the specific kinetic co-energy 

at the air-fluid interface.  
 
Accounting Potential Energy 
 Potential energy, ςq

4
, is stored in the rocket as pressure 

energy in the air volume and in the fluid head of the water. Its 
change is represented in equation 7. 
 
 gLQQPaq ρ−−=V&  (7) 

 
The product of accumulator pressure and volumetric flow is 
potential energy leaving the air volume, as is the product of 
fluid head pressure (ρgL) and volumetric flow leaving the 
rocket. 
 The accumulator is assumed a constant mass, adiabatic 
process. The pressure-volume relationship is 

constant=γ
aaVP , where γ is the ratio of specific heats (γ=1.4 

for air). Thus 
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with the “-in” subscript denoting initial pressure and volume. 
 Both effort variables in equation 7 are functions of 
displacement variables so C elements represent this stored 
energy as in Figure 3. Air pressure is a function of air volume, 
Va  and fluid head is a function of fluid height, L. Note that 

QVa =& . 
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Figure 3 – Bond graph fragment of rocket incorporating 
potential energy 

                                                                 
4 True potential energy is the integral of effort (e) over 

displacement (q) and hence the subscript. The script “V” (ς) is 
distinguished from our symbol for volume (V). 



 

  

 
Accounting Convected Kinetic Energy 
 The convected kinetic energy out of the system is the 
specific kinetic energy at the exit times the volumetric flow 
rate. 
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Continuing to work with kinetic co-energy as previously, we 
represent the specific kinetic energy with equation 2 and its 
partial derivative with respect to volume evaluated at the exit 
plane, |0. 
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This leads to convected kinetic energy in terms of convected 
linear and pressure momentum and specific kinetic co-energy, 
all at the exit (equation 11). 
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At the exit plane of the rocket, the specific pressure 
momentum, linear momentum and kinetic co-energy are shown 
in equations 12a to 12c. 
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 The bond graph of Figure 3 is now modified with an R-
field to include the convective terms of equation 12.  
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Figure 4 – Rocket bond graph including convected kinetic 

energy 
 

The R-field is appropriate since energy loss is modeled and 
the effort terms of equation 11 are functions of flows. 
Obviously the convected pressure momentum and linear 
momentum are associated with Q and v respectively. The 
specific kinetic co-energy is a pressure-type term and is 
associated with Q. 
 
Accounting Energy Exchange With The Environment 
 Power is lost to the environment through gravitational 
attraction, aerodynamic drag, and work done at the fluid exit. 
Quantitatively this power flow, 

eP (positive leaving the 

system), is: 
 
 ( ) QPvFvgm atmdte ++=P  (13) 
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=  is the drag force (positive down) and Patm is 

atmospheric pressure. If we add these effects to the model, the 
final form of the bond graph results in Figure 55. 
 
System State Equations 
 The state equations are easily read from the bond graph. 
The equation representing total system linear momentum is: 
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External forces and convection change total linear momentum. 
The state equation for pressure momentum is: 
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5 If you look closely, the bond graph even resembles the rocket. 



 

  

 Pressure momentum, which is positive downward, is 
changed first by the pressure differential across the fluid. The 
next two terms (partial derivatives) represent the difference 
between the specific co-energy at the exit and that at the air-
water interface. Disregarding other effects, if the specific co-
energy is greater at the exit than the interface then Γ (which is 
the change in Tf with respect to Q) is increasing with time. The 
third partial is the convection of pressure momentum out of 
the rocket and the last term is the fluid head effect that acts as 
an effective pressure. 
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Figure 5 – Completed bond graph of water rocket. 

 
Alternative Formulation 
 The proceeding formulation was based mostly on 
energetic considerations. It is generally known that with bond 
graphs, if you get the “kinematics” correct, the “kinetics” are 
“free” since power is conserved. After the original kinetic 
energy accounting, we could have started with the linear 
momentum statement of equation 14 (which is easily written 
directly) and added the system power balance of equation 16. 
 

 qp
p

atmtd VTQ
V

T
QPg)vm(F && +=

∂

∂
−−−−

0

 (16) 

 
Equation 16 has the power interactions with the environment, 
the convected energy, and the rate of change of system 
kinetic and potential energy. Equations 14 and 16, along with 

previous relationships for 
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(after a bit of manipulation) in the pressure momentum result 
of equation 15 and thus the same system bond graph. 
 
Equations Of A More Common Form 
  It is interesting to see that if we substitute derivatives of 
equation 5 into our state equations 14 and 15, we get the more 
standard equations:
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These can be found, for instance, in Karnopp [1972] for one-
dimensional motion.

  
CLASSICAL MODELING APPROACH

  A more classical approach to the equation development is 
examining a differential fluid element and summing forces. An 
element of fluid is shown at position x with cross-sectional 
area A. A free body diagram of the differential element is 
shown in Figure 6 where x is the measure to the center of the 
element and A is the cross sectional area, which can change 
with x. Pressure and fluid head effects, are considered. 
 
 Summing forces on the element gives 
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Figure 6 - Differential element in classical approach 

 
Simplification of this equation and taking the right side 
derivative gives: 
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And this integrates to equation 17b. 
 Equation 17b is a second order differential equation in 
two unknowns (v and Q) so another relationship is necessary 



 

  

to make the system complete. We do a momentum balance on 
the entire system and end up with equation 19. 
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Equation 19 shows two force terms, a momentum convection 
term, and a time rate of change of system momentum. Taking 
the derivative in equation 19 and arranging gives equation 
17a. We now have a coupled pair of second order equations 
that is ready for computer solution. 
 
A COMPARISON OF APPROACHES 
 To study the benefits of the two formulation approaches, 
we can compare information in the free-body diagram to that 
in the bond graph and we can compare the equation 
information in the bond graph to those of equation 17. What 
do these tell us about the water rocket system?  
 The FBD probably gives more insight on the micro-level. 
Forces that act on a differential slice are not apparent in the 
bond graph approach although the interpretation of the FBD 
just gives forces on the differential element due to pressure 
and gravity. Further, the resulting classical equations are a 
little hard to interpret. Equations 17a and b are coupled in v 
and Q, which make interpretation more difficult. Equation 17a 
sums force-like terms to give changes in velocity and flow 
rate. The first term on the left-hand side of 17a is the total 
mass times absolute acceleration, the first and last terms on 
the right are gravitational and drag forces, and the term in 
parentheses is a difference in specific, relative momenta. 
Equation 17b is likewise. There are pressure terms and 
something we would call dynamic pressure although this 
terms deal with relative velocities (the first term on the right 
side).  The two parts of 17 could be combined to give a single 
second order equation but the interpretation of these terms 
might be even tougher. 
 The bond graph itself, however, gives specific 
information about linear momentum, pressure momentum, and 
energy accounting. For example in Figure 5, the 1 junction 
associated with volumetric flow, Q, shows that (absolute) 
pressure momentum is changed by a static pressure 
difference, fluid head, pressure momentum convection, and 
the difference between specific kinetic co-energies at the two 
ends of the fluid volume. What do these specific energies 
physically mean? They are pressure-like terms that account 
for a difference in cross-sectional areas at the air-water 
interface and the exit. If there are no other affects, more 
specific kinetic co-energy at the exit than the interface means 
an increase in pressure momentum. 
 The 1 junction associated with the linear velocity shows 
the total momentum rate equal to the net external force minus 
the convected momentum.  

 The bond graph shows explicitly what affects the kinetic 
energy of the whole system (the IC-field), and what terms 
combine to represent convected energy (the R-field). The 
bonds on the IC field indicate that the kinetic energy is 
changed by mechanical power, hydraulic power and the 
change in volume of fluid. The three ports that sum to the 
convected energy include convected linear and pressure 
momentum, and specific kinetic co-energy at the exit.  
 It must be said that the relationships from the bond graph 
are possible to come by through classical methods, but the 
methods themselves would not thrust them upon you. The 
Lagrangian bond graph approach gives these in the normal 
course of model formulation.  
 
SOME SIMULATION RESULTS

  Simulations were run varying the initial air pressure and 
initial fill ratio of the rocket. The following results are for an 
initial pressure of approximately 5.5 atmospheres. It was found 
that an initial fluid percentage of about 42% provided the 
highest rocket altitude for this initial pressure. Optimal initial 
fluid percentage varies with launch pressure. The following 
results are for a fill of 40% and the simulations are run until the 
fluid is totally emptied from the rocket. 
 The first graph is the total momentum of the system, 
rocket body and water (Figure 7). This momentum starts 
slowly for the first milliseconds and then increases to a 
maximum near the time the fluid empties. Examining the bond 
graph and seeing that the main component to momentum 
change is convection can explain the delay in total momentum. 
Gravity and drag are not big players here as seen in Figure 8. 
This shows the convection (Cnv), gravitational (Grv), and 
drag (Drg) contributions to momentum change. 
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Figure 7 – Total system momentum 
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Figure 8 – Contributions to momentum change 

 
 The pressure momentum is shown next in Figure 9 with 
the positive direction downward. Γ starts out quickly positive 
due to the initial volumetric flow rate (Q), ends up negative 
when the rocket picks up sufficient speed, and ends 
necessarily at zero when the rocket has no more water.  
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Figure 9 – Pressure momentum 

 
 It is a bit difficult to think of the total pressure momentum 
because it is integrated across the fluid volume and the 
absolute velocity at any point of the fluid is a combination of 
rocket velocity (v) and Q. The fluid at the interface (IntFc) is 
moving upward absolutely while the fluid at the exit is moving 
downward for most of the time (Figure 10). 
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Figure 10 – Absolute velocities at interface and exit 

 
Fluid at the interface and exit are necessarily equal when the 
fluid empties but why these velocities are zero is not clear. 
 
 The contributions to pressure momentum can be seen in 
the pressure terms of Figure 11. There is net pressure (Pr), 
convection of pressure momentum (Cnv), and specific kinetic 
co-energy difference (STf). The pressure initiates Γ but 
convection and specific kinetic co-energies quickly contribute 
as the flow rate increases. Pressure momentum rate goes 
negative after only a few milliseconds due mostly to 
convection.  Pressure momentum convection behaves much 
as the linear momentum convection did (Figure 8). The 
specific co-energies and convection end at zero as they 
should. 
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Figure 11 – Contributions to pressure momentum 

 
 The net results of these dynamics are the rocket velocity 
of Figure 12 and the volumetric flow rate of Figure 13. (Note 
that mass flow is just the product of Q and ρ.) After the first 
milliseconds, the rocket appears to have a nearly constant 
acceleration. The reason for this is not clear. Q jumps up 
initially and slowly decreases till the water is depleted.  
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Figure 12 – Rocket velocity 
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Figure 13 – Water volumetric flow rate 

 
 Figure 14 shows the main energy contributions to the 
dynamics of the water rocket. KEt is the total kinetic energy, 
that of the rocket body plus that of the rocket fluid. KEb is the 
kinetic energy of the rocket body only. Both energies start at 
zero and are equivalent at the end when the water is gone. The 
body kinetic energy is parabolic which is consistent with a 
mostly linear increase in rocket velocity.  
 

0 0.01 0.02 0.03
TimeHsL0

2

4

6

8

ygrenE
HN-mL

KEt KEb Pr Cnv

 
Figure 14 – Energetic contributions to rocket dynamics 

 
The main players in this energy accounting are the energy 
delivered by the accumulator due to a pressure expansion (Pr) 

and the energy convected out of the rocket (Cnv). The total 
kinetic energy is nearly equal to the pressure energy minus 
the convected energy. Other players are the energies due to 
drag (Drg), fluid head (Hd), and gravitational potential (Grv). 
These are shown to be negligible in Figure 15 when compared 
with Figure 14 magnitudes. 
 The pressure energy is approximately a decreasing 
exponential: as the pressure drops, its delivery of energy 
flattens out. The convected energy increases initially and then 
flattens to nearly a zero rate of change for the last quarter of 
the simulation. Since the convected energy is a function of the 
absolute fluid velocity and the volumetric flow rate, Figures 10 
and 13 are reexamined. Although the flow rate remains high at 
the end, the absolute fluid velocity of the exit is low and 
crosses zero. Even though fluid is expelled, its energy is very 
low since its absolute velocity is small. 
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Figure 14 – Minor energetic contributions 

 

CONCLUSIONS 
This paper focused on the development of open system 

models using Lagrangian bond graphs and the insight gained 
in both the model formulation and the examination of 
simulation results. A classical model was similarly formed and 
was shown to yield an equivalent set of equations of motion. 
The bond graph model development was certainly more 
involved but this is exactly what afforded insight into 
relationships in the dynamics. The classical development was 
more concise, but the resulting equations were not as helpful. 



 

The views expressed are those of the author and do not reflect the official policy or position of the US Air Force, Department of 
Defense or the US Government. 

Of course once v and Q are solved for classically, the other 
variables of interest could be constructed as output equations 
but the accounting that shows the contributors to each 
important variable would probably be obscured in the math.  

A benefit of the bond graph approach not discussed is 
the ease of changing modeling assumptions. If fluid frictional 
forces are added, a resistive element associated with the 1Q 
junction is appended. Other effects are easily deleted such as 
drag or fluid head and the result on key variables is 
immediately seen in the bond graph.  

 These conclusions can also be scaled with system 
complexity since larger systems are mostly handled by 
reticulating models into sub-systems and components. 

A net result of this work not only shows how to 
systematically and logically construct Lagrangian bond 
graphs from purely energetic considerations, it shows the 
many relationships that bond graphs generate for physical 
variables. Even though the author has yet to determine what 
exactly contributes to the rockets maximum altitude, he is 
convinced that answer is available with further pondering 
over both the bond graph model and the simulation results. 
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